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Abstract: The rational preparation of molecularly imprinted polymers (MIPs) in order to have selec-
tive extraction of salmeterol xinafoate (SLX) from serum was studied. SLX is an acting β-adrenergic
receptor agonist used in the treatment of asthma and has an athletic performance-enhancing effect.
Molecular dynamics were used for the simulation of the SLX-imprinted pre-polymerization system,
to determine the stability of the system. The computational simulation showed that SLX as a tem-
plate, 4-hydroxyethyl methacrylate (HEMA) as a monomer, and trimethylolpropane trimethacrylate
(TRIM) as a crosslinker in mol ratio of 1:6:20 had the strongest interaction in terms of the radial
distribution functional. To validate the computational result, four polymers were synthesized using
the precipitation polymerization method, and MIP with composition and ratio corresponding with
the system with the strongest interaction as an MD simulation result showed the best performance,
with a recovery of 96.59 ± 2.24% of SLX in spiked serum and 92.25 ± 1.12% when SLX was spiked
with another analogue structure. Compared with the standard solid phase extraction sorbent C-18,
which had a recovery of 79.11 ± 2.96%, the MIP showed better performance. The harmony between
the simulation and experimental results illustrates that the molecular dynamic simulations had a
significant role in the study and development of the MIPs for analysis of SLX in biological fluid.

Keywords: salmeterol; molecularly imprinted polymer; molecular dynamics; precipitation polymerization

1. Introduction

Salmeterol xinafoate (SLX) is a drug classified as a β2-agonist, an acting β-adrenergic
receptor agonist that is used in the therapy of asthma [1] and has an athletic performance-
enhancing effect [2]. β2-agonists are on both the World Anti-Doping Agency (WADA) and
the International Olympic Committee (IOC) prohibited lists, but salmeterol is allowed in
therapeutic doses by inhalation [3]. Inhaled high doses of β2-agonists can increase maximal
physical activity performance and muscle durability [4], and large doses of β2-agonists
may have an ergogenic effect; hence, analysis of salmeterol in plasma is required [5]. The
concentration of salmeterol in plasma was 0.07 ± 0.03 ng/mL in people with asthma and
0.06 ± 0.03 ng/mL in healthy subjects [3]. The small concentrations of analyte target in
complex matrices require selective sample preparation methods [6]. Molecularly imprinted
polymers (MIPs) with the ability to recognize molecular targets can be used as novel sor-
bents for solid phase extraction to extract SLX from biological fluids [7]. MIP is a polymeric
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porous material with complementary binding features concerning the molecule’s structure,
shape, and spatial orientation [8]. As a smart synthetic material, MIP is extensively used
in numerous areas including sensors, chromatography, drug delivery systems, and envi-
ronmental separations/analysis [9]. The application of MIPs is particularly used in solid
phase extraction [10–12] and, moreover, it is used in analytical columns in chromatogra-
phy [13–15] and as a film layer in sensors [16–18]. It is known that the selective recognition
of MIP-ligand comes from the interaction between the template and the functional monomer
present in the pre-polymerization solution [19]. Therefore, the molecular interaction mech-
anisms that exist during the pre-polymerization stage can be used as a prognostic tool for
polymer performance [20]. Affinity of template molecules can be improved by selecting an
appropriate functional monomer. This selection can reduce the non-specific interaction hap-
pening in MIPs and enhance the specific recognition of MIPs to the template molecule [21].
The choice of crosslinker is another crucial step in the construction of selective polymer sys-
tems [22]. The stability of the interaction between the template and the crosslinker should
be weak [23]. The crosslinker may compete with the functional monomer, which may result
in the MIPs having poor recognition properties with respect to the targeted molecules [24].
There are some crosslinkers that could be used in the synthesis of MIP, including ethylene
glycol dimethacrylate (EGDMA) [25], trimethylolpropane trimethacrylate (TRIM) [26],
piperazine diacrylamide (PDA) [27], (+)-N,N’-diallyltartardiamide (DATD) [28], methylene-
diacrylamide (MBAA) [29], diisopropenylbenzene [30], bisacryloylamidopyridine [31],
N,O-bismethacryloyl ethanolamine (NOBE) [32], glycidyl methacrylate (GMA) [33], and
divinylbenzene (DVB) [34]. Synthesizing MIP relying on experimental trial and error
will be very time-consuming and resource-consuming [35]. Nowadays, a computational
approach is already used extensively to investigate the design and synthesis of MIP to give
MIPs with excellent molecular recognition ability [36].

In a previous study [7], the molecular modeling approach and bulk polymerization
method were employed to design and synthesize MIP for the analysis of SLX from spiked
serum. A semi-empirical PM3 method was used to calculate the binding energy of the
complex between the template–functional monomer and the template–crosslinker, to select
the functional monomer with a stable interaction and the crosslinker with the weakest inter-
action with the template. The calculation results showed HEMA and trimethylolpropane
trimethacrylate (TRIM) to be the best functional monomer and crosslinker, respectively.
From this calculation, supported by Job plot method experiments, a mol ratio between
template:functional monomer of 1:6 was also obtained. To validate the result, the more
common ratio (1:4) was used as a comparison. The bulk polymerization method was then
used to synthesize the polymers and the agreement between computational and experiment
result was established.

To support the molecular modeling result, in the present study, we used molecular
dynamics simulations as this is a suitable method for describing the interaction of many
components in a system containing a large number of molecules [37]. To improve the
binding properties of the previous results [7], we used the precipitation polymerization
method to synthesize the novel polymers. The precipitation method was expected to
provide a smaller and homogenous particle size with a large surface area that would
provide better conditions for optimum binding of SLX to the polymers [38].

2. Materials and Methods
2.1. Materials

Salmeterol xinafoate (SLX) CAS number 94749-08-3 purity > 98%, terbutaline (TER)
CAS number 46719-29-3 purity > 98%, and salbutamol hemisulfate (SAL) CAS num-
ber RN 51022-70-9 purity > 98% were purchased from Tokyo Chemical Industry (Tokyo,
Japan). 2-Hydroxyethyl methacrylate (HEMA) CAS number 868-77-9 purity 97%, ethylene
glycol dimethacrylate (EGDMA) CAS number 97-90-5 purity 98%, trimethylolpropane
trimethacrylate (TRIM) CAS number 3290-92-4 purity 98%, and benzoyl peroxide (BPO)
CAS number 94-36-0 purity 75% were obtained from Sigma-Aldrich (Singapore). HPLC
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grade methanol CAS number 47-56-1 purity 99.8%, isopropanol CAS number 67-63-0
purity 99.5%, and acetonitrile CAS number 75-05-8 purity 99.9% were purchased from
Fisher Scientific (New York, NY, USA). Acetic acid CAS number 64-19-7 was purchased
from Sigma-Aldrich (Singapore). Blood samples were obtained from the Indonesian Red
Cross. Empty SPE cartridges were purchased from Supelco (Bellefonte, PA, USA). The
Chromabond ABC18 (C18) sorbent solid phase extraction columns were purchased from
Macherey-Nagel (Düren, Germany). If not otherwise specified, all chemicals are analytical
grade. The morphological evaluation analysis of the polymer was carried out by JSM-
6610LV JEOL Ltd. (Tokyo, Japan). BET Surface Area Analyzer Quantachrome NOVA 2200E
BET was used in the analysis of the surface area of polymers (Florida, FL, USA). Blood
analysis, after extraction with MI-SPE, was performed using HPLC (Waters Alliance e2695
with UV detector) (Florida, FL, USA) with gradient elution, using a water/acetonitrile
mixture as the mobile phase. Acetonitrile concentration was changed from 10% to 20% of
acetonitrile from minutes 2 to 5, 20% to 50% from minutes 5 to 7, 50% to 10% from minutes
7 to 15. The HPLC column was a Zorbax Eclipse XDB-Column C18 (4.6 × 150 mm, 5 µm)
from Agilent Technologies (Santa Clara, CA, USA). The injection volume of the HPLC
analysis was 20 µL, using 0.8 mL min−1 as the flow rate, and the UV detection wavelength
was set at 252 nm. IR analysis was performed using a Nicolet 380 FT-IR from Thermo Fisher
Scientific (Waltham, MA, USA). SPE was conducted using SPE manifold purchased from
Phenomenex (Torrance, CA, USA).

2.2. Molecular Dynamic Simulations

Molecular dynamics simulation was conducted using a molecular system containing
one (1) molecule of template, four (4) or six (6) molecules of functional monomer and
twenty (20) molecules of crosslinker in a mixed solvent consisting of isopropanol and
methanol (1:1). The number of solvent molecules was in accordance with their density.
Two-dimensional structures of SLX, HEMA, EGDMA, TRIM, isopropanol, and methanol
were drawn using the ChemBio3D Ultra 12.0 program (Developed by CambridgeSoft
Corporation, Cambridge, MA, USA) and then converted into three-dimensional structures
using the same program. The ab initio method (Hartree Fock, 3–21 G based set), with Games
interface on ChemBio3D Ultra 12.0 was used in the geometry optimization step [39]. PACK-
MOL software (version v20.3.3) [40] was used to pack molecules of the pre-polymerization
components randomly within a 40 × 40 × 40 Å box with periodic boundary conditions.
Molecular dynamics simulations were conducted using the LAMMPS (version 3 Mar 2020
developed by Sandia National Laboratories, Alburquerque, NM, USA) [41] program com-
bined with reax forcefield [42]. The steepest-descent procedure was used in the energy
minimization step with maximum iterations of 200,000. This step is performed to let the
molecules rearrange and reach the minimum energy, which occurs during the preparation
of the actual pre-polymerization mixture. When the minimum energy was reached, an
equilibration step of 0.5 ns was used to first simulate a temperature rise from 0 K to 333 K
at atmospheric pressure and, second, a constant high temperature at 333 K at atmospheric
pressure. This temperature switch was performed to simulate the temperature shift in the
real polymerization processes. The NVT ensembles are used in the simulation of molecular
systems, with the number of molecules (N), volume (V), and temperature (T) being kept
constant in the system. The 1 ns MD simulation in the explicit solvent was carried out at
333 K, while the coordinates and energy were recovered every 1000 steps, with a step time
of 0.1 fs. Calculation of non-bonded interactions was done using a 10.0 Å cut-off. The Ovito
program (version 3.7.4 developed by OVITO GmbH, Darmstadt, Germany) was used to
visualize and investigate the molecular structure, a 0.05 Å bin size then was employed
to calculate the radial distribution function between SLX-HEMA and SLX-crosslinker in
the system.
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2.3. Synthesis of Molecularly Imprinted Polymer (MIP) of Salmeterol Xinafoate (SLX) and
Non-Imprinted Polymer (NIP) Using Precipitation Polymerization

MIP and NIP were synthesized using the precipitation polymerization method, as
follows. MIP was obtained by dissolving SLX (1 mmol) as a template and HEMA as
a functional monomer (4 mmol / 6 mmol) in 350 mL of an isopropanol:methanol (1:1)
mixture, based on constant associations in a previous study [7] in sealed bottles, and then
sonicated for 5 min. Subsequently, EGDMA/TRIM (20 mmol) was added to the solution
as a crosslinker and then sonicated for 40 min. Benzoyl peroxide (0.206 mmol) was then
added to the vial as the initiator, and the vial was finally placed in a water bath shaker
at 70 ◦C for 24 h. The polymer formed was then washed with methanol and water. After
washing, the polymer was dried in an oven at 60 ◦C for 18 h. NIPs were synthesized in the
same way, but without the addition of a template, to verify MIP results. The compositions
of the synthesized MIP and NIP SLX are presented in Table S1 in Supplementary Materials.
The template was removed from the MIP by an ultrasonic extraction method, using 50 mL
of a methanol-acetic acid mixture (9:1, v/v) for 3 h. The polymer was then centrifuged to
separate the filtrate. The extracted MIP was then rinsed with 50 mL of the methanol-water
mixture (1:1) and dried at 50 ◦C for 18 h. The same method was used for NIP, to remove
the remaining unreacted reagents. To ensure the SLX templates were completely extracted,
monitoring was carried out using 10 mg of MIP added to 1 mL of methanol, and the
analysis was performed in triplicate. The blank used was 10 mg NIP with 1 mL of methanol.
The polymer was then agitated for 3 h at 120 rpm and then set aside. The extraction was
complete if there was no more absorbance from the template in the measurement with the
microplate. Table S1 shows the composition of precipitation synthesized MIP and NIP in
this work, with the same combination as our previous study [7].

2.4. Evaluation of MIP and NIP Adsorption Capacity

Evaluation of adsorption capacity was carried out at various concentrations of SLX
solution, namely 7.5, 10, and 12.5 ppm. A total of 1 mL of SLX solution of each concentration
was added to a vial containing 20 mg of MIP, carried out in triplicate. Twenty micrograms
of MIP mixed with 1 mL of solvent without SLX was used as a blank. The vial was then
stirred for 3 h at 120 rpm and set aside. The filtrate absorbance was measured using a
microplate reader. The data obtained were plotted into Freundlich and Langmuir isotherm
adsorption curves. The adsorption capacity evaluation of the NIP was also done with the
same procedure as MIP.

2.5. Optimization of the MISPE Condition

An empty plastic solid phase extraction cartridge was used for this study. Cartridges
with frits at both ends were filled with 200 mg of dry polymer. These are called MISPE
and NISPE. Optimization conditions were used to determine the conditioning, loading,
washing, and elution solvent that yielded the highest SLX recovery.

Recovery =

The area of eluate
The area of standard

× 100%.

2.6. Application of Molecularly Imprinted Solid Phase Extraction (MISPE) and Non-Imprinted
Solid Phase Extraction (NISPE) on Spiked Blood Serum

The application of MIP and NIP was carried out on spiked blood serum with SLX stan-
dard solution alone and with SLX solution with analogue compounds, namely salbutamol
(SAL) and terbutaline (TER). Three-milliliter empty SPE cartridges were filled with 200 mg
of MIP and NIP. The SPE process was carried out using a 12-port SPE vacuum manifold
from Phenomenex. SPE optimization was carried out with various solvents to obtain
optimal conditions during the conditioning, washing, and eluting stages. The optimal con-
ditions were determined from the highest percent recovery obtained through analysis with
HPLC. This condition was used further to extract 2 mg/L SLX–spiked blood serum only
and with a mixture of SLX with analogue substances. To ensure efficient treatment using
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MIP, blank serum treated with protein deposition using acetonitrile 3 times the volume
of serum and centrifuged for 15 min at 5,000 rpm was injected. All MISPE and NISPE
analyses were performed using validated HPLC conditions, with a correlation coefficient
for linearity (r) of 0.9995, accuracy 95.81 ± 2.21%, and %RSD for intermediate precision of
1.21%, using acetonitrile:water in gradient condition with 0.8 mL/min flow rate [7].

2.7. Physical Characterization of Sorbent with Fourier Transform Infrared (FTIR),
Brunauer-Emmett-Teller (BET), and Scanning Electron Microscope (SEM)

The chemical structure of MIP before and after extraction and NIP was characterized
by FTIR. Two hundred micrograms of KBr were mixed with 2 mg of sample and then
flattened into pellets. Transmission is measured at 400–4000 cm−1. The morphology of MIP
and NIP sorbents was observed using SEM. The specific surface area of the MIP and NIP
was determined using a BET surface analyzer. In the BET method, the specific surface area
of the beads is correlated to the amount of N2 gas absorbed on the surface of the beads.

3. Results and Discussion
3.1. Molecular Dynamic Simulations

In order to have a better insight into the possible interactions and thus an explanation
of our results in previous studies [7], we used a molecular dynamic simulation to see the
possible interactions in the MIP synthesis pre-polymerization complex. Four molecular
dynamics simulations were carried out to describe the effect of the template ratio, functional
monomers (T-FMs), and the role of crosslinkers in the stability of T-FMs. MIP1 and MIP3 are
systems with a 1:6 mol ratio of T:FMs with different crosslinkers, namely EGDMA or TRIM,
respectively, to confirm molecular modeling calculations [7]. The other systems, MIP2
and MIP4, with a 1:4 mol ratio of T-FMs, were used as a comparison to the computational
calculations. The 1:4 mol ratio of T-FMs is a more common formula used in making MIP [43].
The mean spatial distribution of all pre-polymerized components was extracted from the
trajectories using the radial distribution function (RDF) calculation.

The degree of proximity of SLX to HEMA is discussed from the RDF point of view.
In Figure 1, the atoms that can form the interaction site are labeled. The following figure
shows RDF atoms that can form interaction sites. This helps predict the state of the HEMA
molecule around the SLX. As shown in Figure 2, TO (atom O labeled in SLX)-MH (atom H
labeled in HEMA) atomic contact was present. From the result in Figure 2a–f, the distance
of hydrogen bonding was between 1.8 and 3.3 Å [44], and MIP3 showed the strongest
interaction in each case, with peaks from 3.89 to 6.65. When the distance was more than
3.2 Å, there was no interaction between the TO of SLX and the MH of HEMA. TO3 (the
number after “TO” represents the different atom O in SLX) showed the strongest interaction
(Figure 2c), which means that the TO3-MH site can play a dominant role in the identification
imprinting process. TO6 already has an h-bond with TH4 between SL and X, and the bond
interaction between TH4 and TO6 could be stronger than that of HEMA [45], so the RDF of
TO6-MH was weaker than the others.

The effect of the crosslinker on the interaction between SLX with HEMA, between TH
(atom H labeled in SLX) and CO (atom C labeled in crosslinker), is depicted in Figure 3.
EGDMA showed peaks from 1.5 to 2.86 at a distance of 1.8–3.2 Å, while TRIM did not show
this peak in that radius, which means that there is no hydrogen bond between the TRIM and
SLX so it will not interfere with the interaction of SLX with HEMA as a functional monomer.
This result indicates that the interactions between EGDMA and SLX are stronger than
for TRIM. According to this result, TRIM will have a better performance as a crosslinker
compared to EDGMA, as it will not affect the binding between SLX and the functional
monomer [46].
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Figure 3. RDFs display the probabilities of hydrogen atoms (TH) of SLX at distinct separation
distances from the oxygen atom CO (a) and CO2 of EGDMA (b), CO3 (c) and CO4 of TRIM (d).

As shown in Table 1, it is not difficult to see that the strongest site of action was
achieved by MIP3 with a T:FM:Cl ratio of 1:6:20 with TRIM as the crosslinker. The van
der Waals (VDW) atomic radius of O–H is 2.02–3.02 [47]. The use of the summed VDW
radii to determine whether a possible hydrogen bond between the donor and acceptor is
suspected is an implicit assumption of atomic interpenetration [48]. The closest distance
between the hydrogen bond acceptor and hydrogen bond donor atoms and the density
of this distance g(r) indicate that this interaction belongs to the short form and hydrogen
bonds are easily formed at the site [49]. Hydrogen bonds generally have an interaction
strength of 110 kcal mol−1 (4–40 kJ mol−1) [50]. The abundance of hydrogen bonds leads
to a very stable structure [51]. Thus, the adsorption capacity of MIP3 may be greater than
that of MIP 1, MIP2, and MIP4.

Table 1. RDF of oxygen atoms of SLX with hydrogen of HEMA in range of hydrogen bonding radii.

Polymer
TO1-MH TO2-MH TO3-MH TO4-MH TO5-MH TO6-MH TO7-MH

r (Å) g (r) r (Å) g (r) r (Å) g (r) r (Å) g (r) r (Å) g (r) r (Å) g (r) r (Å) g (r)

MIP1 2.7386 0.887 3.040 1.957 2.889 0.925 3.1909 2.737 2.7386 2.324 - - 2.6884 0.783
MIP2 - - - - 3.1407 0.083 2.7889 0.7708 3.1909 3.438 - - 3.1909 0.316
MIP3 2.7885 4.328 2.939 6.125 2.7386 6.658 3.1407 4.863 2.7889 4,386 3.2 0.175 2.7386 3.895
MIP4 3.1407 0.486 2.638 1.951 2.9899 4.449 3.0904 2.9624 2.839 2.295 - - 2.6381 0.675

3.2. Synthesis of the Salmeterol Xinafoate-Imprinted Polymer Using Precipitation Method

The precipitation polymerization method was used to obtain polymers with homo-
geneous particle sizes. Molecularly imprinted polymer made with precipitation poly-
merization usually results in spherical particles with diameters less than 1 mm [52]. We
used bulk polymerization in a previous study [7], and the results showed weak binding
capacity, as seen in the low adsorption capacity. The use of the precipitation method was
expected to improve this. The morphology of the polymer that was obtained with the
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precipitation method was smoother and more homogenous, so the larger surface area of
the polymer could interact with SLX, increasing the binding capacity. In our study, the
surface area obtained with precipitation was 291.706 m2/g for MIP3, while the bulk method
gave 221.757 m2/g. Bulk polymerization has the following advantages: the compound
in the mixture is in a liquid state with no additional solvent, particle size of the resulting
MIP is easy to control, it has low cost compared to other methods, and it is easily carried
out, whereas the disadvantages are that the obtained MIP requires grinding, there are few
deviations in particle shape, and binding sites can be destroyed during the MIP grinding
and sieving. Precipitation shows the following advantages: regular shape of MIP beads
with good yield, polymer chains grow individually into micro-spheres, porogen agents in
the reaction mixture are not needed, the procedure is easy, and it takes less time, while the
only drawback is that precipitation occurs when polymer chains are large enough not to
dissolve in the reaction mixture [53].

3.3. Evaluation of MIP and NIP Adsorption Capacity

The amount of SLX bound to the polymer was determined by batch binding exper-
iments. To describe and determine the adsorption properties of the MIP obtained, the
adsorption isotherm data were matched with two types of adsorption isotherm models,
namely Langmuir and Freundlich. The Langmuir and Freundlich models are general
adsorption isotherm models to describe the adsorption process. For fitting results, we
see that the MIP adsorption process is more suitable for the Freundlich model than the
Langmuir model; however, NIP follows the opposite pattern. Figure 4 shows the fitting
adsorption of MIP and NIP to the adsorption isotherm model.

As shown in Table 2, the suitability of the MIP adsorption to the Freundlich adsorption
model showed an R2 value above 0.99. NIP is more likely to fit the Langmuir isotherm
model with a convincing degree of similarity (R2 > 0.99). The difference in the fitting
results can be explained by the difference in the adsorption mechanism. For the Freundlich
isotherm, the MIP adsorption process involves both surface diffusion and intraparticle
diffusion as a result of the interaction of SLX with polymer binding sites; however, NIP ad-
sorption is mainly dependent on surface diffusion [54]. This is also supported by the value
of the heterogeneity index (m), which showed that the MIPs had a more heterogeneous
distribution of binding sites (near zero) than the NIPs.

Table 2. Isotherm adsorption of MIP and NIP.

Polymer
Langmuir Freundlich

R2 KL (L/mg) Qm (mg/g) R2 m a (mg/g)

MIP 1 0.9954 0.1409 2.8216 0.9998 0.5691 0.4640
NIP 1 0.8289 0.0317 2.4850 0.9918 0.8025 0.0944
MIP 2 0.9882 0.0770 4.6232 0.9994 0.7555 0.3801
NIP 2 0.8859 0.0226 3.0450 0.9948 0.8593 0.0781
MIP 3 0.9997 0.2721 3.6751 0.9997 0.2721 0.8908
NIP 3 0.9958 0.9573 1.0446 0.9958 0.9573 0.0865
MIP 4 0.999 0.346 2.8901 0.999 0.346 0.7025
NIP 4 0.991 0.9714 1.0294 0.991 0.9714 0.0902

In the previous study with the bulk polymerization method, the adsorption capacity
of the polymer was 0.12, 0.05, 0.28, and 0.19 mg/g for MIP1, MIP2, MIP3, and MIP4,
respectively. In the present study, the adsorption capacities with the precipitation method
were increased, namely 0.46, 0.38, 0.89, and 0.70 mg/g for MIP1, MIP2, MIP3, and MIP4,
respectively. This means that the MIPs produced with the precipitation method have
adsorption properties that are better than in the previous method [7].
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3.4. MISPE Optimization

The performance of cartridges packed with MIP particles or NIP particles as sorbents
for SLX SPE was investigated. Solid phase extraction (SPE) conditions, such as solution
loading, washing, and elution, are carefully optimized for high extraction efficiency. This
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study tested isopropanol and water to find a suitable loading solvent. Specifically, 1 mL of
SLX solution, prepared in the above solvent at a concentration of 2 g/mL, was introduced
into the SPE cartridge using 1.0 mL/min flow rate f. Figure 4 shows that only 2.63 ± 0.19%
(isopropanol) and 3.11 ± 0.23% (water) template were released into the MIP cartridge
(MIP3), whereas 70.53 ± 1.96% (isopropanol) and 54.86 ± 1.16% (water) template were
released into the NIP cartridge (NIP3). Therefore, isopropanol and water were chosen as
loading solvents.

In the sample loading process, the template in the sample may be specifically or non-
specifically absorbed by the polymer [55]. Therefore, a suitable washing solvent is required
to remove the non-specifically bonded mold, while maintaining the specifically bonded
mold. Therefore, the solvent used is required to remove the template from the NIP, while
maintaining the template in the MIP [56]. In this study, acetonitrile was investigated to
optimize washing conditions. The results showed that this effect was obtained by using
acetonitrile at a flow rate of 1 mL/min. Figure 5 shows that 2.80 ± 0.42% of SLX was
released from MIP3 and 16.09 ± 1.88% from NIP3. The smaller amount of SLX released
than MIP indicates that acetonitrile is a suitable washing solvent.
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Considering the solubility of SLX and the hydrogen bonding interactions between the
template and MIP, a methanol:acetic acid (99:1) mixture was tested to find the optimal elution
solution. It was found that the elution of SLX was obtained using 4 × 1 mL of methanol:acetic
acid (99:1, v/v) at a flow rate of 0.5 mL/min. Figure 4 shows that 99.04 ± 0.90% of SLX could
be extracted from MIP3 and 13.04 ± 1.59% from NIP3. The higher recovery from the MIP
compared to the NIP showed that the elution solvent was suitable.

3.5. Effect of Concentration of SLX on % Recovery

To investigate the effect of the concentration of SLX on % recovery, polymers MIP1
and MIP3 were compared to NIP1 and NIP3. These polymers were chosen as being repre-
sentative of the 1:6 ratio that showed better binding capacities. Ideally, extraction recovery
should not rely on sample concentration so there should be no significant difference in
recovery across all analyzed concentration ranges [57]. However, this research showed
that the recovery of SLX in isopropanol was preferable at a high concentration. The phe-
nomenon that arose upon loading using propanol was concentration dependent because
the ability of SLX to produce SLX-SLX complexes is higher in high concentrations, both on
the polymer surface and in solution, leading to an increase in the selectivity of SLX [58].
Figure 6 shows that the recovery of SLX with isopropanol as a loading solvent was reduced
at low concentration (0.1 µg/mL) compared to high concentration (4 µg/mL). The opposite
occurred with water as the loading solvent. The polymer was synthesized to extract SLX in
trace concentration; based on the results, water was most suitable for the loading solvent, as
it showed a higher recovery in low concentrations than isopropanol. The recovery of SLX at
0.1 mg/L was 87.99 ± 4.57% from MIP3 and 27.10 ± 4.58% from NIP3 with isopropanol as
the loading solvent, and 98.75 ± 6.15% from MIP3 and 15.52 ± 3.72 from NIP3 with water
as the loading solvent. The higher recovery of SLX on MIP compared with NIP showed
that water is better as a loading solvent for the extraction of SLX in trace concentrations. In
fact, the concentration of SLX in real plasma is 0.1–2 ng/mL after a single dose (50–400 µg)
via inhalation [59]. We believe that loading in water will align with the trace concentrations
of SLX in real plasma.

3.6. Selectivity Test

To evaluate the selectivity, two other compounds, i.e., salbutamol (SAL) and terbutaline
(TER), were selected. The reason for the choice of these compounds was that they afford
many similar functional groups that can bind to MIP. Figure 7 shows that the adsorption
recovery of MIP3 for SLX (92.25 ± 1.12%) was much higher than for SAL (35.23 ± 3.34%)
and TER (28.71 ± 2.61%). Salbutamol and terbutaline have molecule sizes smaller than
salmeterol. The obtained cavity has a larger size for SAL and TER, but in molecular
recognition, both functional group and size effects play a part simultaneously. Herein,
slight differences between the analogue structure and SLX can affect the mechanism of
the “lock–key” recognition rule of the molecular imprinting technique and MIP provides
the highest adsorption capacity toward their template [37]. The selectivity result shows
that the MIP, especially MIP3, has a higher selectivity to the target of interest than to the
other substances, which shows that molecular dynamics simulations combined with the
precipitation polymerization method could be used as an approach to fabricate a highly
selective polymer as a sorbent to extract SLX from biological matrices in the presence of
another similarly structured drug. The present polymers have better selectivity than those
of the previous method.
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3.7. Application of MISPE

To evaluate the optimized MISPE, serum was selected for recovery testing through the
standard addition method. The SLX was spiked into the serum at 2 µg/mL. The recovery
data, presented in Figure 8, showed that the optimized MISPE could successfully extract
SLX from the spiked serum. It should be noted that these recoveries are indicative of
the good performance of the MISPE. MIP3 showed the highest recovery (96.59 ± 2.24%)
compared to the other MIPs or NIP. This result was better than the previous study with the
bulk method (92.17 ± 2.66%) [7] and indicates that MIPs obtained with the precipitation
method show better recognition than the other method. This result correlates with the
adsorption capacity obtained in the previous stage.
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Table 3 shows a comparison of our method to the other study on SLX analysis in blood
plasma. The method is comparable to another study on SLX analysis in blood plasma using
a more sensitive technology, such as LC-MS/MS assays, as shown in the table. As a result
of these findings, we may conclude that our study’s selectivity is comparable to that of
the other.

Table 3. Comparison of repeatability, recovery, and LOQ values with other research studies.

Target Preparation Sample Instrument Repeatability % Recovery
Limit of

Quantification
Reference

Salmeterol SPE HPLC 3.7–16.3% 74–84% 2.0 ng/ml [60]
Salmeterol
xinafoate SPE LC-MS/MS 1.86–6.12% 98.31–100.00% 2.0 pg/mL [61]

Salmeterol
xinafoate LLE HPLC >2.2% 98.2–102.7% 0.025 µg/mL−1 [62]

Salmeterol
xinafoate LLME HPLC 6.0–8.5% >90.0% 0.30 ng/ mL [63]

Salmeterol
xinafoate LLE LC-MS 8.8–13.7% 103.6% 2.5 pg/mL [64]

Salmeterol
xinafoate MISPE HPLC 1.7–6.8% 98.7% 6.3 ng/ml Our result

To compare the performances of the synthesized MIP with the available sorbent, the
analysis of SLX was also performed using C-18 cartridges as a references [64]. As can be
seen in Figure 9, MIP3 (96.594 ± 2.24%) has higher peaks of SLX (retention time 9.28 min)
than C-18 (79.11 ± 2.96%), which means that MIP has a better affinity to SLX than C-18 in
serum. The recovery of MIP3 from the precipitation method was much higher than that of
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the previous bulk method (92.17 ± 2.66%) [7], which showed that the present polymers
have a better analytical performance than before.
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3.8. Physical Characterization of Sorbent with Brunauer-Emmett-Teller (BET), Scanning Electron
Microscopy (SEM), and Fourier Transform Infrared (FTIR)

BET analysis (Table 4) shows that the MIPs from the precipitation method have a larger
surface area than those of the previous bulk method, which causes the surface capacity for
adsorption to be higher and more of the analyte to be adsorbed. Usually, larger surface area
indicates better formed particles [65]. The suitable surface area provides the possibility to
ensure the correct permeability conditions (good analyte migration through the polymer
structure and increasing the probability of reaching the binding site for a given chemical
compound) for the sample and organic solvents during analyte collection, as well as the
extraction process [66]. The average particle size of bulk particles from our previous paper
is 250 µm for MIPs and 428 µm for NIPs, and for precipitation the particle size is 175 µm
for MIPs and 224 µm for NIPs [7].

Table 4. Surface area of MIP and NIP.

Polymer
Surface Area (m2/g)

Precipitation Method Bulk Method [7]

MIP1 254.419 42.297
NIP1 23.051 18.367
MIP2 211.486 40.674
NIP2 35.393 6.033
MIP3 291.706 221.757
NIP3 40.216 61.381
MIP4 230.160 141.370
NIP4 32.882 37.131

The SEM micrograph (Figure 10) showed that the surface of the MIPs was crude and
contained countless pores, but the surface of the NIP was smooth and less porous. The
irregular, rough, porous surface of the MIPs is most likely formed by the template removal
creating the particular sites of the rebinding cavities [67]. The structural properties of the
MIPs indicate a higher adsorption capability [68].
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Figure 11 shows the MIP spectrum before extraction (red line), MIP after extraction
(black line), and NIP (blue line). All the polymers, which are MIP1–4, MIP after extraction,
and NIP1–4, have a similar backbone and are identical. MIP before extraction has different
peaks from wavenumber 3300–3500 cm−1 (N–H stretch) and 3010–3100 cm−1 (C–H stretch
for aromatic benzene ring) indicating the present of SLX, and this peak was not found in
MIP after extraction and NIP, indicating the omission of SLX for NIP and the complete
removal of SLX as a template in MIP after extraction.
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4. Conclusions

In this work, MIP was prepared by precipitation polymerization using SLX as the template
molecule, HEMA as the functional monomer, and EGDMA and TRIM as crosslinkers. MIP
optimized using molecular dynamics simulation according to a template:monomer:crosslinker
ratio of 1:6:20 showed stronger interaction from the RDF point of view. No hydrogen
bond interaction of TRIM with SLX from the MD result shows that the crosslinker will
not affect the binding between template and functional monomer and will result in better
molecular recognition with the latter. TRIM-based MIP greatly decreased non-specific
adsorption compared to EGDMA-based MIP. The present polymer made with precipitation
polymerization had better selectivity over structural analogues and better capacity than
in our previous work made with bulk. Moreover, MIP was successfully applied in a solid
phase extraction in serum analysis and effectively extracted SLX from the complex serum
matrix, confirming the elimination of interference and achieving high SLX recovery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27113619/s1. Table S1: The Compositions of synthesized
MIPs and NIPs using precipitation polymerization.
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Abbreviations
SLX Salmeterol xinafoate
WADA World Anti-Doping Agency
IOC International Olympic Committee
MIPs Molecularly imprinted polymers
TER Terbutaline
SAL Salbutamol
HEMA Hydroxyethyl methacrylate
EGDMA Ethylene glycol dimethacrylate
TRIM Trimethylolpropane trimethacrylate
BPO Benzoyl peroxide
NIPs Non-imprinted polymers
MISPE Molecularly imprinted solid phase extraction
NISPE Non-imprinted solid phase extraction
HPLC High-performance liquid chromatography
FTIR Fourier transform infrared
SEM Scanning electron microscope
BET Brunauer-Emmett-Teller
T Template
FM Functional monomer
RDF Radial distribution factor
VDW Van der Waals
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